Metodo

International Studies in Phenomenology and Philosophy

Book | Chapter

206405

The semiotic approach to mathematical evidence and generalization

Susanna Marietti

pp. 35-43

Abstract

The fundamentals of Peircean semiotics have been applied by Peirce himself to the main philosophical questions relating mathematics. Following Michael Otte's suggestion of resorting to a semiotic approach to mathematical epistemology in order to understand mathematical cognition, it is possible to account for the chief problem of generalization, going beyond the traditional explanations exemplified by Locke's use of abstract general ideas and Berkeley's criticism to it. Against the background of Peirce's main lines of departure from Kantian transcendentalism, the problem of the evidence obtained from proofs performed upon individual diagrams and laying claim to universality can be faced within a semiotic frame that focuses on the interplay of iconic, indexical and symbolic elements of signs.

Publication details

Published in:

Hoffmann Michael H. G. , Lenhard Johannes, Seeger Falk (2005) Activity and sign: grounding mathematics education. Dordrecht, Springer.

Pages: 35-43

DOI: 10.1007/0-387-24270-8_4

Full citation:

Marietti Susanna (2005) „The semiotic approach to mathematical evidence and generalization“, In: M. H. Hoffmann, J. Lenhard & F. Seeger (eds.), Activity and sign, Dordrecht, Springer, 35–43.